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A peculiar multi-dimensional wave pattern in shock tube experiments on retrograde
fluids is the ring formation phenomenon. When the incident shock is reflected by the
endwall of a shock tube filled with retrograde fluid vapour, under certain conditions,
rings of liquid/vapour mixture form behind the reflected shock. In this paper, we find
the reason for such symmetry breaking and ring formation phenomena by studying
a prototype model for flows with liquid/vapour phase transitions. The isothermal
case of this model exhibits all major one-dimensional wave patterns observed in
shock tube experiments on retrograde fluids. The symmetry is broken by the liquid or
liquid/vapour drops initiated behind the reflected shock where the pressure is higher
than the equilibrium pressure. Liquid drops become liquid/vapour mixture drops
later. Using a liquid/vapour mixture drop at the reflecting wall as the initial condition
for the prototype model, it is shown that this drop will evolve into a ring, yielding the
explanation for ring formation. The outer fronts of rings are collapsing waves. Such
waves are supersonic, as confirmed by some photographs of actual experiments. It is
also shown that a liquid or liquid/vapour mixture drop cannot evolve into a ring if
no reflecting wall is present, agreeing with experimental observation. A mechanism is
also provided by the model for the emergence of the ‘button’ at the centre of, and
the small-scale asperities at, the liquefaction shock front observed at the exit of the
open-end shock tube.

1. Introduction
Liquid/vapour phase transitions have been studied for decades. However, many

issues are still open. For example, Dettleff et al. (1979) found in their shock tube
experiments on retrograde fluids that rings of liquid/vapour mixture would form
randomly behind reflected shocks. Although several attempts have been made to
identify the reason for the ring formation, the phenonmena still remains to be
explained. In this paper, we shall present an explanation for ring formation through
analysis of waves in the prototype model proposed and developed in Fan (1998,
2000b) for qualitative investigation of liquid/vapour phase transitions in shock tubes.
We shall further explain the small-scale surface structures of liquefaction shocks
observed in experiments.

Basic observations on fluids exhibiting liquid/vapour phase transitions involving
metastability are as follows: The pressure functions p(ρ, T ) for such fluids have the
shape depicted in figure 1 when T is fixed. Here ρ is the density and T the temperature.
The region ρ < α corresponds to vapour, while ρ > β corresponds to liquid. The line
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Figure 1. The pressure function p(ρ, T ) for fixed T .

joining (m, p(m, T )) and (M, p(M, T )) is called the Maxwell line, where liquid and
vapour can coexist in equilibrium. The spinodal region ρ ∈ [α, β] is a highly unstable
region where the fluid, if it can enter, will quickly decompose into vapour or liquid or
their mixture. Thus, the pressure curve p(ρ, T ) in this region cannot, at present, be
measured. The metastable region m < ρ < α (or β < ρ <M) is where pure vapour (or
liquid) can stay for some time with little condensation (or evaporation) until enough
liquid (or vapour) nuclei are initiated.

Research on fluid flows involving liquid/vapour phase transitions has been very
active since the groundbreaking work of Oswatitsch (1942). It includes many
challenging areas of research such as state functions of fluids, multi-phase flows in
various fluid configurations, nucleation and droplet growth rates, to name just a few.
The literature in this area is too large to cite here. The reader is referred to re-break
view articles such as Wegener (1969, 1975), Wegener & Mack (1958), Wegener &
Wu (1977), Kotake & Glass (1981), for flows with condensation, and Abraham
(1974), Fuchs & Sutugin (1970), Oxtoby (1992), Springer (1978), Wagner (1982), for
nucleation and droplet growth rates; and references cited therein. Flows involving
evaporation are typically more complicated, see Skripov (1974) for more information.
Most previous works are about phase transition flows in shock tubes, condensation
in supersonic nozzles and other expansion/compression devices. Since this paper is
closely related to phase transition flows in shock tubes, we only mention Kotake &
Glass (1981), Delale, Schnerr & Zierep (1993a, b) as a starting point for references on
flows in other devices such as nozzles. Studies on condensation in expansion waves in
shock tubes, using regular fluids with inert carrier gases, were initiated and developed
by Wegener & Lee (1983), Wegener & Lundquist (1951), Wegener & Wu (1977).
Many authors have contributed to the study of flows with phase transitions in shock
tubes, such as Bauschdorff (1975), Glass, Kalra & Sisilian (1977), Homer & Hurle
(1972), Kotake & Glass (1977), Kawada & Mori (1973), Lee (1978), Sisilian (1975),
Sisilian & Glass (1976), and Wu (1977). Dettleff et al. (1979), Gulen, Thompson &
Cho (1994), Thompson, Carofano & Kim (1986), and Thompson et al. (1987) carried
out experimental and computational studies on phase transitions in shock tubes using
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Figure 2. A compression shock is sent into stable vapour at rest. Here, λ1 = λ+ = 1, u1 = u1k
with u1 < 0 and k denoting the direction along the centre axis of the shock tube away from
the end window.

retrograde fluids (i.e. fluids with large heat capacity), where they observed a number
of interesting wave patterns. There are some studies on the flows of retrograde
fluids in supersonic nozzles, see Kluwick & Scheichl (1996) and references cited
therein.

The behaviour of regular fluids and retrograde fluids can be quite different in
adiabatic experiments. For example, consider the vapour at equilibrium pressure in
an adiabatic container. When compressed, the pressure of the fluid p will increase, so
will the temperature T and the equilibrium pressure pe(T ). Given the same increase in
pressure, the temperature of a regular fluid increases more than that of a retrograde
fluid since the latter has higher heat capacity. Thus, the equilibrium pressure pe(T )
of a regular fluid increases more than that of a retrograde fluid. The heat capacity
of a retrograde fluid is large enough so that the pressure after compression p is
higher than pe(T ), resulting in condensation. For a regular fluid, the pressure after
compression p is lower than pe(T ), and hence condensation will not occur. When a
container of the fluid is in a heat bath to keep the temperature constant, and heat
conduction is rapid, then the above mechanism is absent and the regular fluid will
behave like a retrograde fluid.

For definiteness, in this paper, we shall concentrate on retrograde fluids or fluids in
the isothermal case. Experimental observations for such fluids can be compared with
analytical results for isothermal models.

Dettleff et al. (1979) and Thompson et al. (1986, 1987) summarized the major wave
patterns involving phase transitions observed in shock tube experiments on retrograde
fluids. Their experimental apparatus was a tube with a piston (or a substitute) on
one side, say the left side, with the other side either open or closed. Compressing or
withdrawing the piston can induce phase transition. The following is a list of these
wave patterns:

(a) Ring formation. This is a particular multi-dimensional wave pattern related
to phase changes. In this case, a glass window closes one end of the shock tube.
The tube is filled with stable vapour. A dry shock, i.e. a shock in vapour without
phase transition, is sent into the tube (see figure 2). The shock is chosen so that the
pressure behind it is still below the equilibrium pressure. After the shock is reflected
by the glass window, the pressure behind the reflected shock is higher than the
equilibrium pressure, resulting in condensation. Dettleff et al. (1979) observed that
the condensation occurs in two stages. At first, rings of liquid/vapour mixture are
observed just behind the reflected shock at the window, as shown in figure 3. Then
these rings quickly spread out to complete condensation behind the reflected shock.
Such rings were not observed in experiments with open-end shock tubes, even when
the Mach number of the liquefaction shock was high, Kim (1987), Thompson et al.
(1987).
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Figure 3. Rings of liquid/vapour mixture appear at the window and behind the reflected
shock, Dettelff et al. (1979).

(a) Liquid-evaporation splitting

(b) Vapour-condensation splitting
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Figure 4. Conceptual representation of one-dimensional wave splitting in a liquid–vapour sys-
tem by Thompson et al. (1987). All waves travel to the right. The motion of the piston is shown
by the wide hatched arrows, fluid motion by thin arrows and wave motion by open arrows.
(a) Withdrawing the piston: FW= forerunner rarefaction wave; EW= evaporation wave.
(b) Compressing the piston: CD= condensation discontinuity; FS = forerunner dry shock.

(b) Rarefaction wave splitting. A rarefaction wave is sent into the liquid by
withdrawing the piston from liquid. This wave then splits into a forerunner rarefaction
wave, which sends the liquid into the metastable region, followed by a slower moving
evaporation shock, as shown in figure 4(a). The upstream state of the evaporation
shock is overheated liquid.

(c) Shock wave splitting. A shock is sent into vapour by compressing the piston
into the vapour. If the shock is not too strong, it will split into a forerunner shock
and a slower moving condensation discontinuity across which vapour changes to
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Figure 5. Transition from smooth to chaotic liquefaction shock fronts with increasing shock
Mach number, taken from figure 20 of Thompson et al. (1986).

liquid/vapour mixture or liquid, as shown in figure 4(b). On further increasing the
shock strength, the condensation discontinuity will move faster, and eventually the
condensation discontinuity and the forerunner shock merge if the compression is
strong enough. When the upstream is equilibrium liquid/vapour mixture, then there
is no wave splitting.

(d) Rarefaction shock. By withdrawing the piston from an equilibrium liquid/
vapour mixture, a rarefaction shock is generated. The fluid downstream of the shock
is overheated vapour. Pushing the piston into the equilibrium liquid/vapour mixture
will create a condensation discontinuity.

(e) Surface structures and the transition from smooth to chaotic liquefaction shock
fronts with increasing shock Mach number. As the Mach number of the incident
shock increases, a variety of features appear on the surface of the liquefaction shock
front. They include, in approximate order of increasing shock Mach number, a small
protuberance or ‘button’ at the centre of the shock front (figure 5a); regular surface
waves; small-scale surface asperities or eruptions; surface discontinuities; chaotic
shock fronts.

Several attempts have been made to explain the ring formation phenomenon.
When Dettleff et al. (1979) discovered ring formation, they guessed that these were
vortex rings, and that these vortices were due to the action of the shock pressure
gradient upon a liquid droplet. When the incident shock passes a liquid drop or a
heavy particle of impurities, the drop accelerates slower than the surrounding vapour,
causing a gradient of velocity. The difference in velocity will produce vortex rings,
and the rings of mixture observed are these vortex rings. There is no detailed analysis
available to justify this conjecture. According to this explanation, ring formation
would occur behind any liquefaction shock if the Mach number were large enough.
However, Thompson et al. (1987) and Kim (1987) later discovered that this is not the
case: ring formation was observed consistently only when shocks were reflected by
the endwall, and the reflected shock’s Mach number was above 2.5. In the open-end
shock tube experiments rings were absent even if the Mach number of the incident
shock was above 3 (see Gulen 1992, p. 181). This suggests that the ring formation has
nothing to do with fluid vortices, nor shock strength. Some photographs published
in Gulen et al. (1994) showed that some rings expanded in the direction vertical
to the incident shock at a Mach number 4 when the incident shock was of Mach
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number 2.87. One ring grew to 4.1 mm in radius in less than 6 µs. There is no detailed
justification available for how a tiny droplet of a few µm in radius can cause a vortex
ring of a few mm in radius whose outer front travels much faster than the incident
shock. Gulen (1992, p. 189) observed that in the shock reflection experiments, “with
a few exceptions”, the final equilibrium state behind the reflected shock was beyond
the vapour spinodal limit. Thus, he conjectured that ring formation occurred because
the vapour was pushed into the spinodal region. However, this explanation cannot
explain (i) why the geometric structure is a ring, (ii) why compression shocks in the
open-end shock tube experiments cannot push the vapour into the spinodal region
even at a much higher Mach number, and (iii) why rings were also present in those
‘few exceptions’.

To obtain a deeper understanding of liquid/vapour phase changes, in particular to
explain ring formation and other surface structures, mathematical models have to be
used. We would like to have a model that is simple enough to allow mathematical
analysis but still preserves wave patterns observed in experiments in the isothermal
case. Then, through the analysis of the model for evolution process of the ring
formation, we can get insight into the reason for ring formation. It is even better
if it is possible to make the model quantitatively accurate by using realistic state
functions, parameters, or by introducing more variables and equations if necessary.

Earlier works on flows involving phase changes in shock tubes considered models
similar to reactive flow equations with some complicated droplet nucleation and
growth rate functions that govern the phase changes. See the review article by
Kotake & Glass (1981) and references cited therein for more information. Some
computations and analysis of these models for regular fluids with inert carrier gases
have been carried out by Glass et al. (1977), Kotake & Glass (1977), Sisilian & Glass
(1976), Smolders, Niessen & van Dongen (1992) and Sisilian (1975) to yield many
interesting results. Whether these models can exhibit wave patterns (a–d) for retro-
grade fluids is not clear yet. These models are difficult to analyse mathematically due
to the complicated droplet nucleation and growth rates. Using these models to find a
clear explanation for ring formation through mathematical analysis may be difficult.

Rabie, Fowles & Fickett (1979) studied a simple model of the dynamics of phase
transitions

ρ̇ + ρux = 0, ρu̇ + px = 0, ė + σ v̇ = 0,

λ̇ = −λ − λe

γ
χ(p � pig),


 (1.1a)

where the overdot denotes the usual Lagrangian derivative along a particle path, ρ is
the density, u the particle velocity, σ the stress, v = 1/ρ, λ the reacted mass fraction,
e the specific internal energy, γ the typical reaction time and χ the characteristic
function. The equilibrium reacted mass fraction is

λe =




0 if ρ > M,

ρ − m

M − m
if M � ρ � m,

1 if ρ < m,

(1.1b)

and pig the artificial ignition pressure. The equilibrium pressure is assumed to be cons-
tant, and hence the fluid is similar to a retrograde fluid. The term χ(p � pig) is a tech-
nical assumption to make travelling waves possible. Rabie et al. (1979) studied the
phase plane for the travelling wave equations of (1.1). They also studied the piston
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problem with initial values in the metastable liquid region. They found double wave
structures in the solutions. The advantage of this model is that it is simple enough to
allow mathematical analysis yet still provide valuable insights. However, the choice of
the reaction rate equation (1.1b) forces the fluid to go to equilibrium exponentially fast,
which excludes the creation of metastable states. Thus, the rate law (1.1b) cannot be
used to investigate ring formation and other phenomena associated with metastability.

The book by Fickett & Davis (1979) contains an extensive investigation of a
prototype system

ρt + p(ρ, λ)x = ερxx, λt =
λe − λ

γ
, (1.2)

where λe is given in (1.1b) and p(ρ, λ) = (ρ2+qλ)/2, and q > 0 is a constant. Although
(1.2) is a much simplified system, it captures some features of waves of detonation
type in flows involving phase transitions.

Dynamic flows involving liquid/vapour phase transitions have also been studied
through the investigation of the system of conservation laws

vt − ux = 0, ut + p(v)x = 0, (1.3)

with van der Waals types of pressure functions. When the van der Waals type of
pressure function is used, the system (1.3) is of hyperbolic–elliptic mixed type. This
system can reproduce wave patterns (b, c), as shown by Slemrod (1983), Shearer
(1986) and Fan (1993). However, this system does not naturally allow liquid/vapour
mixtures. Moreover, it cannot include some types of phase boundaries that turn out
to be critical to our explanation of ring formation.

The above-mentioned models for phase transition flows are either too complicated
to yield a clear explanation without a lot of technicalities or too simple to capture
the ring formation phenomenon. Recently, Fan (1998, 2000b) proposed a model for
qualitative investigation of flows involving liquid/vapour phase transitions in shock
tubes. The model exhibits all the one-dimensional wave patterns (b–d) listed above.
Here we like to point out that once the wave pattern observed in the model and in
experiments match, then quantitative accuracy is possible. For example, if both the
experiment and the model with the same initial data exhibit the same two-shock wave
pattern as in figure 4(b), then the states of the fluid on both sides of the shocks are
determined by the Rankine–Hugoniot conditions. The Rankine–Hugoniot conditions
are algebraic equations depending only on the state functions, such as the pressure
function. Therefore, quantitative accuracy is possible to achieve with more accurate
state functions and parameters once the wave patterns match. Fan (2000a) showed
that the nucleation rate term in the model, in the context of figure 4(b), accelerates
the slower moving condensation discontinuity up to the speed of the forerunner dry
shock. The larger the nucleation rate, the faster the condensation discontinuity moves,
and hence the shorter the distance between the condensation discontinuity and the
forerunner dry shock.

Despite these analytical results for the model, whether this model exhibits the ring
formation phenomenon (a) still remains to be investigated. Furthermore, there is
another issue that was overlooked in the early attempts to explain the wave patterns
in shock tube experiments: the experimental apparatus in Dettleff et al. (1979) and
Gulen et al. (1994) was rotationally symmetric cylinders. The initial state of the fluid
was also cylindrically symmetric. Fluid flow keeps cylindrical symmetry about the
centre axis of the cylinder. C.-W. Shu (1999, personal communication) pointed out
that the rotational symmetry was broken by those randomly appearing rings. This
symmetry breaking is also to be explained.
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In this paper, we shall provide an explanation for both the symmetry breaking
and ring formation. After the incident shock is reflected, the pressure behind the
reflected shock is higher than the equilibrium pressure. Randomly generated liquid or
liquid/vapour mixture drops due to nucleation effect then appear and grow behind
the reflected shock, breaking the symmetry. These liquid or liquid/vapour mixture
drops will evolve into rings of liquid/vapour mixture, with the help of the endwall.
This explanation for ring formation is found through the analysis of the motion of the
front of a liquid/vapour mixture droplet at the reflection wall and behind the reflected
shock. The motion of the liquid droplet’s front is governed by the model presented in
§ 2. The evolution of this droplet into a ring can be explained by features of various
types of one-dimensional waves of the model listed in § 3. The explanation is based
on the facts that (i) liquid or liquid/vapour mixture droplets are initiated behind the
reflected shock, (ii) there is a reflecting wall present, and (iii) the pressure behind the
incident dry shock is lower than the equilibrium pressure. These factors coincide with
the experimental observation (a) nicely. This explanation does not require any bold
assumptions (see § 4 for the details of the evolution of a droplet into a ring). The outer
front of a ring is a collapsing wave listed in § 3. This suggests that the photographs
taken at the end window during experiments provide a way to measure the speeds of
collapsing waves. Collapsing waves are supersonic relative to the front of the waves.
This is confirmed in § 4 by analysing some rings in photographs published in Gulen
et al. (1994). The Mach numbers of the rings analysed in § 4 range from 2 to 4.

Our explanation for ring formation also reveals a mechanism for the generation of
the ‘button’ at the centre of a liquefaction shock wave leaving the end of an open-end
shock tube, shown in figure 5(a), and small-scale asperities on a liquefaction shock
wave.

Since the explanation of ring formation relies heavily on the properties of the
collapsing waves, we further investigated numerically the sensitivity of their speed to
the ratio of species diffusion and typical reaction time, and to the deviation from the
equilibrium pressure, as well as to the shapes of the pressure functions. It turns out
that the speed of a collapsing wave increases as the ratio of diffusion over reaction
time increases, and as the deviation from the equilibrium pressure increases. However,
the speed is insensitive to the shapes of pressure functions.

This paper is organized as follows. In § 2, the model developed in Fan (1998, 2000b)
is presented and discussed. In section § 3, all major one-dimensional waves of the model
discovered so far are listed. Two new types of one-dimensional waves for the model, the
collapsing and explosion waves, are investigated. These two types of waves cannot exist
in the mixed-type p-systems (1.3). It turns out that the outer front of a liquid/vapour
mixture droplet behind the reflected shock is a collapsing wave. The explosion waves
were studied in Rabie et al. (1979) through their model (1.1). In § 4, the symmetry
breaking and ring formation are explained in detail. The speeds of collapsing waves are
estimated from photographs of experiments to confirm that they are indeed supersonic
as predicted by the model. Furthermore, the emergence of the ‘button’ at the centre
of the liquefaction shock front and the small-scale asperities at the liquefaction shock
front observed at the exit of the open-end shock tube are also explained in § 4.

2. A model for liquid/vapour phase transitions in shock tube experiments
Let p1(ρ, T ) and p2(ρ, T ) be the pressure function of the pure vapour phase and

liquid phase respectively, where ρ is the density and T the temperature. Typical
graphs of p1 and p2 for fixed temperature are given in figure 6 by thick curves.
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Figure 6. Pressure functions p1(ρ, T ) and p2(ρ, T ) for fixed T .

Liquid and vapour phases can coexist in equilibrium at the equilibrium pressure
p = pe = p1(m, T ) = p2(M, T ) where the line joining (m(T ), pe) and (M(T ), pe) is
called the Maxwell line. The above quantities and functions can be measured. Each
component of function p(ρ, T ) is extended continuously to an increasing function on
IR, as shown in figure 6 by the thin curves, to obtain p1(ρ, T ) and p2(ρ, T ). Although
the extended parts of these pressure functions beyond the spinodal limit, i.e. p1(ρ1) for
ρ1 > α and p2(ρ2) for ρ2 < β , cannot be measured and the extension of the pressure
function into the spinodal region is somewhat arbitrary, these extended parts of the
pressure function do not affect the outcomes. For example, the part of the pressure
function p1(ρ) for ρ > α(T ) does not have much effect since there will not be any
vapour there.

We shall treat liquid and vapour as different species and specify the transition of
phases by a reaction rate equation.

Let quantities ai , i = 1, 2, denote the quantity for vapour when i = 1 and that of
liquid when i = 2. In shock tube experiments, liquid and vapour are finely mixed. The
volume fraction of the ith species at point x and time t is fi(x, t). The density of the
ith species in the volume fraction of the ith species at point x and time t is denoted
by ρi(x, t). The reaction rate function denoting the mass the of ith species produced
per unit volume per time unit is wi . The conservation of mass requires w1 + w2 = 0.

The model for flows involving liquid/vapour phase transitions used in this paper
is derived from the Navier–Stokes systems of equations describing reactive flows:

ρt + ∇ · (ρu) = 0,

(λρ)t + ∇ · (λρu) = w1 − ∇ · j 1

(ρu)t + ∇ · (ρ(uu) + P) = 0,

Et + ∇ ·
(

uE + u · P + q +

2∑
i=1

hi j i

)
= 0.




(2.1)
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Here u is the average velocity, λ the mass fraction of vapour, ρ the density, E the
energy per unit volume, P the stress tensor, q the heat flux vector, j i the diffusion
flux of species i and hi the specific enthalpy of species i. The function w1(ρ, λ, T ) is
the rate of vapour creation. The sum of diffusion fluxes of all species satisfies

2∑
i=1

j i = 0.

The energy density is E = E1f1 + E2f2 where Ei is the energy density of species i.
The energy density Ei can be decomposed further into kinetic energy and internal
energy densities:

Ei = 1
2
ρiu

2 + ρiei,

where ei(T , ρi) is the specific internal energy of species i. The specific enthalpy of
species i is

hi = ei + p/ρi.

The difference in specific enthalpy of vapour and liquid

L(T ) = h1 − h2

represents the heat of formation, or latent heat released when a unit mass of vapour
condenses completely to liquid under constant pressure.

The following assumptions simplify the modelling.
(i) Vapour and liquid fill the space, i.e.

f1 + f2 = 1 (2.2a)

ρ = ρ1f1 + ρ2f2. (2.2b)

(ii) The temperatures of the liquid and vapour components at each point are equal.
(iii) The pressure in the portion occupied by the ith component is pi(ρi, T ).

Different components at the same location have the same pressure:

p = p1(ρ1, T ) = p2(ρ2, T ).

Thus, the pressure function p can be computed from the following equations:

p = p1(ρ1, T ) = p2(ρ2, T ),

ρ = ρ1f1 + ρ2(1 − f1)

}
(2.3)

With the notation

λ := ρ1f1/ρ (2.4)

for the mass fraction of the first species and the specific volume vi of the ith species
in the mixture, the system of equations (2.3) becomes

p = p1(v1) = p2(v2),

v = λv1 + (1 − λ)v2.

}
(2.3a)

(iv) The stress tensor is

P =
[
p +

(
2
3
ε1 − ε2

)
(∇ · u)

]
I − ε1(∇u + ∇uT ) (2.5)

where constants ε1, ε2 > 0 are viscosity coefficients.
(v) The heat conduction q is given by the Fourier Law

q = −κ∇T (2.6)

where κ > 0 is the heat conductivity coefficient.
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(vi) The diffusion flux of the ith species is given by Fick’s law:

j i = −µρ∇λi . (2.7)

Fick’s law is appropriate for a dilute gas. Although fluids in our problem are dense,
we still use Fick’s law unless there is a better alternative.

Under these assumptions, the system describing the dynamics of phase changes is

ρt + ∇ · (ρu) = 0

(λρ)t + ∇ · (λρu) = w1 + ∇ · (µρ∇λ)
(ρu)t + ∇ · (ρ(uu) + P) = 0,

Et + ∇ · (uE + u · P) = κ	T + ∇ · (µLρ∇λ) .




(2.8)

Once the relations ei = ei(ρi, T ) and w1 = w1(ρ, λ, T ) are known, the system (2.8)
forms a closed system of equations.

In the one-dimensional case, this system is reduced to

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = εuxx,

Et + (ρuE + up − εuux)x = κTxx + (µL(T )ρλx)x,

(λρ)t + (λρu)x = w1 + (µρλx)x.




(2.9)

In Lagrangian coordinates, the corresponding system of equations is

vt − ux = 0,

ut + px = ε

(
ux

v

)
x

,

et + (up)x = ε

(
uux

v

)
x

+ κ

(
Tx

v

)
x

+

(
µL(T )λx

v2

)
x

,

λt = w(λ, v, T ) +

(
µλx

v2

)
x

,




(2.10)

where w = w1/ρ and e is the specific energy

e = 1
2
u2 + λe1 + (1 − λ)e2.

The isothermal case, i.e. when the temperature is constant, of (2.10) is

vt − ux = 0, (2.11a)

ut + px = ε

(
ux

v

)
x

, (2.11b)

λt = w(λ, v) +

(
µ
λx

v2

)
x

. (2.11c)

The isothermal model (2.11) approximates the case where heat capacity is very large
or where the fluid container is in a heat bath.

In view of (2.3), if ∂p1/∂v, ∂p2/∂v < 0, then

∂p

∂v
=

p′
1(v1)p

′
2(v2)

λp′
2(v2) + (1 − λ)p′

1(v1)
< 0 (2.12)
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and
∂p

∂λ
=

p′
1(v1)p

′
2(v2)(v2 − v1)

λp′
2(v2) + (1 − λ)p′

1(v1)
> 0. (2.13)

This implies that the left-hand side of (2.11), which is of the form

Ut + F(U )x,

is strictly hyperbolic in the sense that ∇F(U ) has three distinct real eigenvalues. In
contrast, with the van der Waals pressure function, the system is of hyperbolic–elliptic
mixed type, which is, in general, harder to handle than a strictly hyperbolic system.
Further calculation shows that

∂2p

∂v2
> 0 if

∂2pj

∂v2
> 0, j = 1, 2. (2.14)

The production of the vapour (or liquid) phase occurs through the initiation or
annihilation of nuclei of vapour (or liquid) and the subsequent growth of such nuclei
when these nuclei and elements of the other phase meet. Thus, the production rate
function of the first species is

w = wgrowth + winitiation, (2.15)

where winitiation is the rate of the creation of nuclei of the vapour phase, and wgrowth

that of the growth of such nuclei. Arguments similar to the theory of chemical kinetics
lead to

wgrowth = kλa(1 − λ)b

where a and b are positive constants. In this paper, we shall take

wgrowth = kλ(1 − λ). (2.16)

Here λ(1 − λ) is the probability that particles of liquid and vapour collide to
make reactions possible and k is the rate constant. In the thermochemistry theory,
the rate constant is a function of temperature given by the Arrhenius law. During
liquid/vapour phase transitions, however, the temperature changes are usually minor
but the rate of phase change varies significantly according to |p − pe|. Thus, the
expression for the rate constant k should be adjusted according to the following facts.
When pe(T ) − p(λ, v, T ) > 0, where pe(T ) is the equilibrium pressure at temperature
T , liquid tends to evaporate and hence wgrowth � 0. The larger pe − p is, the faster
the evaporation proceeds. Similarly, when pe(T ) − p(λ, v, T ) < 0, vapour tends to
condense into liquid and hence wgrowth � 0, and the larger |pe − p| is, the faster the
condensation occurs. Consistent with these facts, we shall model the growth of nuclei
of vapour by

wgrowth =
p − pe

γpe

λ(λ − 1) (2.17)

where γ is taken as a constant. There are some growth rate formulae available in the
review article by Kotake & Glass (1981). However, these growth rates are typically too
complicated to yield clear insight into ring formation. For a qualitative investigation,
we need a growth rate that captures the basic behaviour of the growth rate term,
yet allows mathematical analysis to reveal cause–result relations. For this reason, we
shall use (2.17) in this paper.

The function winitiation, called the nucleation rate, is a complicated topic in itself. For
more information on this function, see the review by Oxtoby (1992), Springer (1978)
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and references cited therein. The nucleation rate has a significant effect on the speed
of, say, a liquefaction wave and its acceleration as shown in Fan (2000a). However,
to explain the symmetry breaking and ring formation phenomenon, we need only the
following qualitative behaviour of the nucleation rate: the nucleation rate is small
near the equilibrium pressure, and it is very large near the spinodal limit or Wilson
lines. The sign of the nucleation rate for liquid drops is

sign(winitiation) = sign(p − pe). (2.18)

Remark: The extension part of the pressure functions does not have much effect in
our system. For example, consider the part of p1(ρ1) in ρ1 > α. In this range, the rate
function w << −1 has very large absolute value which forces the fraction of vapour
λ to be virtually zero in view of (2.11c). This implies that ρ2 = ρ > β and hence the
pressure p = p2(ρ) is well-defined and is not sensitive to the extended part of the
function p1 for ρ1 > α.

Remark: The term (λx/v)x represents the diffusion of vapour species into the mixture
of vapour and liquid. The diffusion effect not only exists naturally, but also has a
significant role in the system (2.11) and hence (2.8). The term (p − pe)λ(λ − 1)/γ /pe

represents the rate of reaction for liquid and vapour particles at the same location
(x, t) only. It does not cover the reaction among neighbouring particles. The diffusion
term µλxx then determines the probability that neighbouring particles collide. The
necessity of this diffusion term can be illustrated by the following example. Let u = 0,
T =constant,

λ=

{
0, x < 0,

1, x � 0,

and v be such that the pressure is a constant larger than pe at the initial time. By the
Maxwell rule, which states that the only stationary phase boundary happens at the
equilibrium pressure, vapour should start to condense at the liquid/vapour interface
which results in the motion of the phase boundary. However for the system (2.11)
with µ = 0 the solution is the initial data and hence no phase change happens. On
the other hand, when the pressure is not the equilibrium pressure, the liquid/vapour
interface in (2.11) with µ > 0 must move, which is in agreement with the Maxwell
rule.

There are many droplet growth formulae available, see Kotake & Glass (1981)
and references therein for information. These formulae already include the effect of
vapour near a droplet of liquid colliding with the droplet, resulting in the growth of
the droplet. Thus, in the systems of phase transition flows mentioned in Kotake &
Glass (1981), there are no diffusion terms for species. On the other hand, the growth
rate (2.17) does not include the effect of diffusion and hence a diffusion term is
needed.

3. Basic one-dimensional isothermal waves
The isothermal system (2.11) describes fluid evolution in an apparatus immersed

in a heat bath. It is an approximation for retrograde fluids since the temperature
does not change much in shock tube experiments due to their high heat capacity.
Any results in the isothermal case can serve as guides for the non-isothermal system.
For the isothermal system, the analysis is easier and waves can be shown clearly on
(p, v)-diagrams. When significant differences between the behaviour of waves of the
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isothermal system (2.11) and that of the non-isothermal one (2.10) are expected, we
shall point them out.

The isothermal system (2.11) contains three positive parameters: viscosity ε, typical
reaction time γ , and diffusion coefficient µ. These three parameters are proportional
to the mean free path. Thus, for simplicity, we shall assume these three parameters are
constant, and use the scaling γ = ε/A and µ = Bε. For convenience of mathematical
analysis, we change the diffusion terms (ux/v)x and (λx/v)x to uxx and λxx respectively.
Then, the system (2.11) becomes

vt − ux = 0,

ut + p(v, λ)x = εuxx,

λt =
A

ε
(p − pe)λ(λ − 1) + Bελxx,

(u, v, λ)(x, 0) =

{
(u−, v−, λ−) if x < 0,

(u+, v+, λ+) if x > 0.




(3.1)

Note that the nucleation term is omitted in (3.1) to concentrate on the propagation
of phase boundaries without the influence of nucleation terms. Later we can consider
the effects of adding in the nucleation term. One of the results in Fan (2000a) states
that the inclusion of the nucleation term will accelerate the propagation of the phase
boundaries. The effect of a modification of the viscosity and diffusion terms will be
discussed later.

Typical reaction times ε/A > 0 are very small. This motivates us to consider the
zero reaction time limit ε → 0 of solutions of (3.1). Denote the solution of (3.1) by
(uε, vε, λε)(x, t). If there is a sequence εn, n = 1, 2, . . . , such that εn → 0+ as n → ∞
and the limit

(u, v, λ)(x, t) := lim
n→∞

(u, v, λ)(x, t) (3.2)

exists almost everywhere, then in the sense of distributions the limit satisfies

vt − ux = 0, (3.3a)

ut + p(v, λ(x, t))x = 0, (3.3b)

(p(v, λ) − pe)λ(λ − 1) = 0, (3.3c)

(u, v, λ)(x, 0) =

{
(u−, v−, λ−) if x < 0,

(u+, v+, λ+) if x > 0.
(3.3d)

The structures of solutions of (3.3) are easier to characterize than those of (3.1). Due
to (3.3c), any smooth part of a solution of (3.3) must either have constant λ = 0, 1
or constant pressure p = pe. The latter is called an isobaric wave. For a non-isobaric
wave to have λ(x, t) varying with x, discontinuities in λ(x, t) must be introduced.

There are two basic types of waves for (3.3): reacting and non-reacting. Reacting
waves are those solutions of (3.1) involving phase changes after the waves pass
through the fluid. From the last paragraph, basic reacting waves are either isobaric
waves or step functions, called shocks,

(u, v, λ)(x, t) =

{
(u+, v+, λ+) if x − ct > 0,

(u−, v−, λ−) if x − ct < 0,
(3.4)
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where the constant c is the shock speed determined by the Rankine–Hugoniot
condition

−c(v+ − v−) − (u+ − u−) = 0,

−c(u+ − u−) + (p+ − p−) = 0.

}
(3.5)

Since the structures of solutions of (3.3) are easier to characterize, we can study the
behaviour of (3.1) through the behaviour of solutions of (3.3) which are the ε → 0+
limits of solutions of (3.1). However, some solutions of (3.3) are not the ε → 0+
limits of solutions of (3.1) and hence they do not approximate solutions of (3.1) when
ε > 0 is small. This motivates the following vanishing-viscosity admissibility criterion
for solutions of (3.3):

Definition 3.1. A solution (u, v, λ)(x, t) of (3.3) is admissible if there is a sequence
{εn}∞

n=1, with εn → 0+ as n → ∞ such that

(u, v, λ)(x, t) = lim
n→∞

(uεn, vεn, λεn)(x, t) (3.6)

where (uεn, vεn, λεn) are solutions of (3.1) with ε = εn.

Remark: In the above definition, we choose pointwise convergence for the purpose
of definiteness. Other types of strong limits can also be used.

A travelling wave of (3.1) is a solution of (3.1) of the form

(u, v, λ)

(
x − ct

ε

)

where c is the wave speed relative to the Lagrangian coordinate, i.e. wave speed
relative to fluid particles. It satisfies

−cv′ − u′ = 0,

−cu′ + p′ = u′′,
−cλ′ = Aw(v, λ) + Bλ′′,
(v, u, λ)(±∞) = (v±, u±, λ±), (v′, u′, λ′)(±∞) = (0, 0, 0).


 (3.7)

After some simplification, system (3.7) becomes

−cv′ = c2(v − v−) + p − p−,

−cλ′ = Aw(v, λ) + Bλ′′,
(v, λ)(−∞) = (v−, λ−), (v, λ)(∞) = (v+, λ+).


 (3.8)

An asymptotic analysis shows that for a shock solution (3.4) to satisfy the vanishing-
viscosity admissibility criterion, it is necessary that (3.8) has a solution. Conversely,
if the shock data (3.4) are such that (3.8) has a solution, then this shock satisfies the
vanishing-viscosity criterion. This leads to the following travelling wave admissibility
criterion:

Definition 3.2. (a) We say that a shock (3.4) is admissible by the travelling wave
criterion (or say that the shock has a travelling wave profile), if (3.8) has a solution. (b)
A piecewise continuous solution of (3.2) is said to be admissible by the travelling wave
criterion if all discontinuities in the solution are admissible in the sense of (a).

Working with the vanishing-viscosity admissibility criterion, Definition 3.1, directly
is usually very difficult and expensive. Thus, we shall use the travelling wave criterion.

According to (3.3c) and the Rankine–Hugoniot conditions (3.5), there are the
following cases with non-negative wave speeds c. The case for negative wave speeds
can be obtained by a change of coordinate, x �→ −x.
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Figure 7. Pressure function p(v, λ): case 1.

Case 1. Liquefaction wave. The system (2.11) has travelling waves with either (a)
λ− = 0, λ+ = 1, v− < v+ and p(v−, λ−) > p(v+, λ+) � pe, or (b) λ− = 0, 0 < λ+ < 1,
v− < v+ and p(v−, λ−) > p(v+, λ+) = pe (see figure 7).

In front of the wave, the fluid is vapour in case (1a) and liquid/vapour mixture in
case (1b). Behind the shock, the fluid is liquid, because λ− = 0. After the wave passes,
the fluid becomes liquid. Thus, this wave is called a liquefaction wave. Fan (1998,
2000b) proved that liquefaction waves exist if the wave speeds satisfy

c =

√
−p(v+, λ+) − p(v−, λ−)

v+ − v−
� 2

√
AB|p(v−, λ−) − pe|. (3.9)

On the other hand, if the speeds satisfy

c � 2
√

AB|p(v+, λ+) − pe|, (3.10)

then there is no travelling wave. Note that in case 1(b), the condition (3.10) does
not impose any restriction. Numerical computations show that for case 1(b), there is
always a travelling wave as long as λ+ ∈ (0, 1), even if (3.9) is not satisfied.

In the non-isothermal case, liquefaction waves are typically partial, meaning that
λ− > 0, i.e. the fluid behind the wave is a mixture of liquid and vapour. This
is because as vapour condenses to liquid, latent heat is released, which raises the
temperature T− behind the wave. The equilibrium pressure pe(T−) will increase as
the temperature rises to reach the pressure behind the wave, p−. When pe(T ) reaches
p−, the condensation will stop, resulting in partial liquefaction, i.e. 1 > λ− > 0 and
p(v−, λ−, T−) = pe(T−). By contrast, this mechanism is absent in the isothermal case,
and hence only complete liquefaction waves are present.

Case 2. Evaporation waves. Fan (1998, 2000b) also proved that under the same
existence condition (3.9), there are travelling waves of (2.11) with either (a) λ− = 1,

λ+ = 0, v− > v+ and p(v−, λ−) < p(v+, λ+) � pe, or (b) λ− = 1, 1 > λ+ > 0, v− > v+

and p(v−, λ−) < p(v+, λ+) = pe (see figure 8). After the wave passes the fluid, the
fluid changes from liquid, or liquid/vapour mixture, to vapour. Thus, this wave is
called an evaporation wave. Similarly, under condition (3.10), there is no evaporation
wave. Our numerical tests show that there is a travelling wave for case 2(b) as long
as λ+ ∈ (0, 1), even if (3.9) is not satisfied.

In the non-isothermal case, evaporation waves are usually partial, meaning that
1 > λ− > 0 and p(v−, λ−, T−) = pe(T−).
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Figure 8. Pressure function p(v, λ): case 2.
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Figure 9. Pressure function p(v, λ): case 3.

Case 3. Collapsing wave. In front of this wave is a metastable vapour, λ+ = 1,
p+ > pe. Behind the wave is a liquid/vapour mixture at equilibrium pressure, p− = pe,
λ− ∈ (0, 1), as shown in figure 9. As fluid passes through the wave, it undergoes fast
condensation. The existence of this kind of wave is verified by numerical computations.
The pressure function in (3.1) used in the numerical study is

p(v, λ) =
(1 + λ)2

4v2
. (3.11)

The equilibrium pressure is pe = 1 and the Maxwell lines are m = 1/2 and M = 1.
For the right-hand side of (3.1), centred differences are utilized for the second-order
derivative terms and an explicit scheme for the reaction term. To reduce the influence
of numerical viscosity from the discretization of the left-hand side of (3.1), the
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Figure 10. (a) The solution of (3.1) with µ = 10γ, and initial data (3.12) where p+ = pe +1.2,
λ+ = 1, p− = pe , v− = 0.6, λ− = 0.2. The speed of the collapsing wave near the location
x = 3.5 is calculated through the Rankine–Hugoniot conditions with data at x = 2.5 and
x = 4. (b) As (a) except that v− = 0.9, λ− = 0.8. The speeds of the collapsing wave in (a) and
(b) are the same.

p+ − pe ss s2 s10

1.2 2.555 3.689 6.965
1.0 2.378 3.309 6.328
0.8 2.20 2.897 5.628
0.6 2.020 2.440 4.841
0.4 1.820 1.892 3.914
0.2 1.621 NCW 2.712

Table 1. Speed of collapsing waves for various p+ − pe when the pressure function is (3.11).
Here, ss is the sound speed at (v+, λ+ = 1), s2 the speed of the collapsing wave when µ = 2γ ,
s10 the speed of the collapsing wave when µ = 10γ and NCW means no collapsing wave. Grid
size parameters for computations are 	x = 0.01 and 	t = 1.41421 × 10−5.

third-order WENO discretization proposed by Jiang & Shu (1996) is used for the
left-hand side of (3.1). Initial data for computations are

(v, u, λ)(x, t) =

{
(v+, 0, 1) if x > 1,

(v−, −0.1, λ−) if x < 1,
(3.12)

where

p− = p(v−, λ−) = pe = 1, 0 < λ− < 1 and p(v+, 1) > pe

By choosing u+ = 0, the value of (v+, λ+) and the front states of the collapsing wave
coincide. After sufficiently many time steps, the collapsing wave profile appears as
shown in figure 10. The speed of the collapsing wave does not depend on (v−, λ−)
as long as p+ − pe is fixed and p(v−, λ−) = pe and 0 < λ− < 1. The computed
results are tested for stability with respect to grid sizes by varying 	t and 	x with
	t/	x2 � 0.5. The results are recorded in table 1.

Table 1 shows that speeds of collapsing waves are faster when the species diffusion
coefficient µ increases and when the difference p+ − pe increases. This coincides with
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p+ − pe ss s2 s10

1.2 2.2 3.699 NCW
1.0 2.0 3.32 6.34
0.8 1.8 2.91 5.638
0.6 1.6 2.456 4.849
0.4 1.4 1.934 3.921
0.2 1.2 1.285 2.722
0.1 1.1 NCW 1.888

Table 2. Speed of collapsing waves for various p+ − pe when the pressure function is (3.13).
Grid size parameters for computations are 	x = 0.01 and 	t = 2 × 10−5.

the intuition that when the species diffusion coefficient µ is larger, more vapour/liquid
mixture in the back of the wave diffuses to the front of the wave, which is in the
metastable vapour state. This causes the metastable vapour in front of the wave to
condense faster, which makes the wave move faster. Table 1 also shows that collapsing
waves are supersonic relative to their fronts. The Mach number of the collapsing wave
increases as p+ − pe increases.

To test the dependence of the speeds of collapsing waves on the shape of the
pressure functions, we used the pressure function

p(v, λ) =
1 + λ

2v
(3.13)

in table 2. Tables 1 and 2 show that speeds of collapsing waves are almost insensitive
to the shapes of pressure functions as long as such waves exist for both pressure
functions.

Case 4. Explosion wave. In front of the wave is a metastable liquid, λ+ = 0,
p+ < pe. Behind the wave is a liquid/vapour mixture at equilibrium pressure, p− = pe,
λ− ∈ (0, 1). The Rankine–Hugoniot conditions then require v+ > v− as depicted in
figure 11. As the wave passes through the fluid, evaporation occurs and the pressure
increases. The wave speed is faster than the frozen sound speed. Like the collapsing
wave in case 3, we have not analytically proved the existence of this kind of wave,
but verified it numerically.

Case 5. Isobaric wave. The term isobaric wave refers to the region of a solution
of (3.3) where p ≡ pe. For example, when the isothermal liquid/vapour mixture
at equilibrium is compressed, condensation will occur but the pressure stays at
equilibrium. A more explicit form of isobaric wave arises from p ≡ pe and (3.3):

u = u(x, t0),
v(x, t) = vt (x, t0)(t − t0) + v(x, t0),
λ = λe(v(x, t)).


 (3.14)

Whether some solutions of the form (3.14) are not admissible and how to select
admissible solutions from (3.14) are left for future research.

Non-reacting waves are solutions of (3.3) where there is no net change of phase
before and after waves pass through the fluid.

Case 6. Non-reacting compressive shock waves. In the case where pvv > 0, a non-
reacting shock must satisfy λ− = λ+ = 0 or 1 and the Lax admissibility conditions√

−pv(v−, λ−) > c >
√

−pv(v+, λ+), (3.15a)



66 H. Fan

p

v

pe

λ = 0 λ = 1

v– v+

Figure 11. Pressure function p(v, λ): case 4.

p

v

pe

λ = 0 λ = 1 

v– v– v+v+

Shocks with
positive speed 

Shocks with
negative speed

Figure 12. Pressure function p(v, λ): case 6.

or

−
√

−pv(v−, λ−) > c > −
√

−pv(v+, λ+), (3.15b)

where c is the wave speed determined by the Rankine–Hugoniot conditions (see
figure 12).

Case 7. Non-reacting rarefaction waves. These are continuous solutions of (3.3),
(3.4) of the form (u, v, λ)(x, t) = (u, v, λ)(x/t). By (3.3c), it is necessary that λ(x, t) ≡
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Figure 13. Pressure function p(v, λ): case 7.

λ± = 0 or 1, and the system (3.3) is reduced to the non-reacting p-system for gas
dynamics. In order for (3.3) with (3.4) to have a rarefaction wave solution, it is
necessary and sufficient that

u+ − u− =

∫ v+

v−

√
−pv(v, λ−) dv, v− < v+ (first family of rarefaction waves)

(3.16)
or

u+−u− = −
∫ v+

v−

√
−pv(v, λ−) dv, v− > v+ (second family of rarefaction waves),

(3.17)
as shown in figure 13.

Recall that the above results are for the system (3.1) with the viscosity and diffusion
terms modified from (2.11). For non-reacting waves as described in cases 6 and 7,
such a modification has no effect on the wave speed and the end states since they are
determined algebraically by the Lax criterion and the Rankine–Hugoniot conditions.
For the reactive waves, described in cases 1 to 5, we expect that such a modification
will change the wave speed, because the modification changes the ratio of the effective
diffusion coefficient over typical reaction time γ . The larger this ratio is, the faster the
phase boundary moves. However, the qualitative behaviours for end states of phase
boundaries as shown in figures 6, 7, 8, and 11 are expected to remain the same under
this modification, as confirmed by our numerical experiments.

4. Symmetry breaking and ring formation
In this section, we shall give an explanation of the symmetry breaking and ring

formation during the shock tube experiments on retrograde fluids. In shock tube
experiments, a glass window closes one end of the tube, as depicted in figure 2. The
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Figure 14. The moment after the shock is reflected by the endwall. The state (u1, p1, λ1) in
front of the reflected shock is chosen to be λ1 = 1, p1 < pe, and the velocity of the fluid
u1 = u1k with u1 < 0. The state behind the shock satisfies u2 = u2k, p2 > pe, λ2 = 1).

tube is filled with a stable vapour of retrograde fluid. The piston on the left is pushed
into the tube to send a compressive shock wave into the vapour. After the shock is
reflected by the endwall, a reflected shock travelling away from the wall will form.
The initial pressure of the vapour and the speed of the piston are chosen so that
the pressure of the fluid after the incoming shock, p1, is still below the equilibrium
pressure, and the pressure after the reflected shock, p2, is above equilibrium pressure
(see figure 14). Rings of liquid/vapour mixture will appear at the window first and
then quickly spread out behind the reflected shock. The experiment apparatus is
cylindrically symmetric around the centre axis of the shock tube. The appearance
of many liquid/vapour mixture rings clearly breaks the symmetry. This raises the
question of the cause of the symmetry breaking.

The symmetry breaking can be explained as follows. Just after the shock is reflected,
the pressure behind the reflected shock p2 is higher than the equilibrium pressure. By
fluctuations, liquid droplets appear randomly behind the reflected shock. Since the
pressure p2 > pe, these liquid droplets will grow. The growth is fast when the pressure
p2 is close to the Wilson line. Then the temperature inside and near these droplets will
increase due to the latent heat released as the vapour condenses on the droplets. The
increased temperature will raise the equilibrium pressure pe(T ), while the pressure
in the droplets will decrease due to the condensation. Then the liquefaction process
will stop halfway when the equilibrium pressure and pressure in the droplets become
equal, resulting in partial liquefaction, or liquid/vapour mixture. This consideration
yields the reason for symmetry breaking behind the reflected shock: the combination
of the randomness of locations of liquid droplets initiated and the subsequent growth
of these droplets, especially when p2 is close to the Wilson line.

The above argument only explains the symmetry breaking. To see why rings of
liquid/vapour mixture are formed, more detailed analysis is required. To this end,
we concentrate on the evolution of one liquid/vapour mixture droplet behind the
reflected shock wave. Figure 15 depicts, with cylindrical symmetric coordinates (r, z),
the states of fluid near such a drop just after it is created. Inside the liquid/vapour
mixture drop, the state is (p, λ) = (pe, λ3) with 1 > λ3 > 0. When the droplet forms,
the pressure inside the droplet decreases from p2 to p3 = pe and hence the velocity
of fluid in the droplet in the radial direction r will change from 0 to negative, i.e.
u3 · r < 0. Outside the droplet, the state of the fluid is (p2, λ2) = (p2 > pe, 1). The
Riemann solver for this type of initial data consists of a collapsing shock, as is shown
in case 3 of § 3 and figure 10, and some other less visible waves. The front of the drop
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Figure 15. The initial state around a drop of liquid/vapour mixture: r, k are the directions
of axes of the cylindrical symmetric coordinate. Region III is a drop of liquid/vapour mixture
with state (u3, p3, λ3) Here, 0< λ3 < 1, p1 < p3 = pe <p2, u3 · r < u1 · r = u2 · r = 0.
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Figure 16. The state of the fluid after the front of the drop contacts region I. The front
I → III moves into the region III.

will evolve as a collapsing wave. The collapsing wave in one dimension propagates
faster than the frozen sound speed

√
−pv(v2, λ2), while the reflected shock II → I is

slower than
√

−pv(v2, λ2). By a remark later in this section, we shall see that the
cylindrical symmetry and the non-positive u3 · r will further increase the speed of the
collapsing wave. Thus, the front of the drop will quickly catch up with the shock
II → I, as shown in figure 16. Here, the arrow in II → I indicates that the front of the
wave is region I and the back of the wave is region II. After the front of the drop
catches the reflected shock, the front of the liquid/vapour mixture drop has two parts.
The first part is the boundary between regions I and III, and the second part is that
between III and II. The state of fluid behind I → III is (v, λ, p) = (v1, 1, p1) while that
in front of the second part is (v, λ, p) = (v2, 1, p2) (see figure 16). Since p3 = pe > p1,
the shock I → III separating regions I and III is an evaporation wave described in case
2 of § 3. Since the speed of fluid behind the reflected shock is close to zero, the front
I → III moves toward the reflecting wall. Meanwhile, the front III → II separating
regions II and III continues to move into region II, as shown in figure 16. The speed
of the front III → II is faster than the sound speed at (v2, λ2 = 1),

√
−pv(v2, 1) since

it is a collapsing wave. The speed of the evaporation shock I → III is slower than the
sound speed at (v1, λ = 1),

√
−pv(v1, 1). Under the assumption that pvv > 0, the speed
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Figure 17. A ring forms after the front I → III contacts the window endwall.

√
−pv(v1, 1) is less than

√
−pv(v2, 1). Thus, the motion of the front I → III cannot kill

the liquid/vapour mixture region as long as the front III → II remains a collapsing
wave. The front III → II can cease to be a collapsing wave if pe(T3) becomes not less
than p2. This is possible if the latent heat is large and the heat capacity is small, as
in the case of regular fluids, so that the temperature T3 becomes high enough to push
pe(T3) above p2. Retrograde fluids have high heat capacities and hence region III will
remain. On the other hand, for regular fluids, region III may vanish. After a part of
the front I → III reaches the window wall, a ring of liquid/vapour mixture appears,
as illustrated by figure 17.

Remark. The cylindrical symmetry will not make the speed of the collapsing wave
front III → II in figure 16 slower than in the one-dimensional case. First of all, the
wave speed is determined by the Rankine–Hugoniot conditions:

c =

√
−p2 − p3

v2 − v3

. (4.1)

Thus, the speed c only depends on the value of p and v on the two sides of the front.
The cylindrical symmetry affects the values of p and v on the two sides of the front.
The initial velocity of the fluid in the radial direction is zero. As the front III → II
passes, the radial velocity of the fluid behind the front will move towards the centre
z-axis. This will make the fluid inside region III denser while the pressure will remain
at the equilibrium value p3 = pe(T ) due to the fast reaction in liquid/vapour mixture.
The compression effect in III will raise the temperature T and hence p3 =pe(T ). But
because the fluid is retrograde, the temperature change is small. The denser v3 is
closer to v2 than in the one-dimensional case while p3 − p2 differs a little from the
one-dimensional case. Then in view of the Rankine–Hugoniot conditions, the speed
of the front c will not become less than that in the one-dimensional case.

The above analysis on the formation of rings implies that the outer fronts of rings
are collapsing shock waves. This suggests that it is possible to determine the speed
of the collapsing waves from photographs taken at the end window of the shock
tubes. It is interesting to see whether the outer fronts of rings of cloud propagate
supersonically as predicted by case 3 of § 3. An example of such photographs is
figure 18 of Gulen et al. (1994), which is copied here as figure 18. The diameter of
the window is 57.4 mm.

Example 4.1. In figure 18(e), the radius of the largest ring of cloud pointed out by
the white arrow is about 6.8 mm. Although the photograph does not show when this
ring is initiated, it certainly takes less than 20 µs to form such a ring. Assume this
ring grew from a tiny liquid/vapour drop. Then the average speed of the outer front
of the ring is not less than 340 m s−1. Gulen et al. (1994) stated that the sound speed



Ring formation in shock tube experiments 71

(a) (b) (c) (d )

(e) (f) (g) (h)

Figure 18. Photographs of rings of liquid/vapour mixture behind the reflected (liquefaction)
shock wave obtained by Gulen et al. (1994). The fluid used is iso-octane. The parameters are
p0 = 0.402 bar, T0 = 100 ◦C. (e) Test #oct051490-2: incident shock’s Mach number is M0 = 2.81.
The photograph was taken at td =20.0 µs after the incident shock reached the end window.
(g) Test #oct051590-3: M0 = 2.87, td =6.0 µs.

of the fluid is about 165 m s−1. Thus, the Mach number of the outer front of the ring,
which is a collapsing wave, is not less than 2.06.

Example 4.2. In figure 18(g), the outer radius of the ring pointed out by the white
arrow is about 4.1 mm. It takes less than 6.0 µs to form this ring. Assuming this ring
grew from a tiny liquid/vapour drop, the average speed of the outer front of the ring
is not less than 683 m s−1, yielding the Mach number 4.14.

There are many other smaller rings in the photographs. Since the photograph does
not show the time when the rings were initiated, we cannot conclusively estimate the
speed of front propagation for these small rings.

The above two examples show that the outer front of the rings of cloud are
supersonic. This observation agrees with our conclusion in § 3 that collapsing waves
are supersonic.

Remark. An existing conjecture on the reason for the formation of the ring of cloud
is that as the incident shock passes a liquid drop or other heavy particles at the
window, there is a velocity difference between the drop and the surrounding vapour.
This difference causes the formation of vortex rings, visible as the ring of cloud.
However, there is no detailed analysis showing this is possible. In particular, why is
there cloud inside the vortex rings, and vapour in the centre of the rings? How is it
possible that a tiny drop of µm order can cause such a big velocity difference as to
make a vortex ring of mm order? How is it possible that an incident shock of Mach
number 2.87 can produce a vortex ring that travels perpendicularly to the incident
shock at Mach number 4? The mechanism of liquid drops causing a velocity gradient
is also present in the open-end shock tube experiments. Why are there no such rings
observed in the open-end shock tube experiments? To validate the conjecture, one
has to do a detailed analysis and answer these questions. Our explanation answers all
the above questions.

The model (3.1) also explains why rings are absent behind the liquefaction shock in
the open-end shock tube experiments depicted in figure 4(b). The liquefaction wave
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Figure 19. Region I is stable vapour, II is metastable vapour. Regions III and IV are filled
with liquid/vapour mixture. The thin arrow indicates the motion relative to fluid particles. The
open arrow indicates motion of waves relative to Euler coordinate. The front III → II moves
faster than the front I → III. Thus, the droplet III cannot evolve into a ring without a wall.

has two parts: first it pushes the pressure of vapour above the equilibrium pressure
in region II, then the condensation occurs at the interface IV → II (see figure 19).
When the Mach number of the liquefaction shock is high, region II is thin. Since
region IV is already filled with liquid/vapour mixture, the only possible place for
rings of liquid/vapour mixture to form is in II. Now, the question becomes whether
a liquid/vapour mixture droplet in region II can evolve into a ring of liquid/vapour
mixture. Since there is no reflection wall, and because the front III → II moves faster
than I → III, it is impossible for the front I → III to penetrate region III to form a
ring.

Furthermore, figure 19 also suggests a mechanism for the ‘button’ on the liquefaction
shock IV → II observed at the exit of an open-end shock tube in experiments on
retrograde fluids, shown in figure 5(a). Thompson et al. (1986) observed, in figures
20 to 23 of their paper, the transition from smooth to chaotic liquefaction shock
fronts with increasing shock Mach numbers. They pointed out a few unusual surface
structures during the transition, such as a ‘button’ at the centre, small-scale surface
asperities, and instability of the phase boundaries. Consider the waves IV → II → I in
figure 19 at the exit of the open end of the shock tube. The place in region II with
the highest pressure is at the central axis of the tube. Then, a liquid/vapour mixture
drop is most likely to initiate at the central axis of II. After the initiation of the
first liquid/vapour mixture drop, the fronts II → I and I → III in figure 19 move in
opposite directions, and the front III → II moves much faster than I → III does. When
region II is thin relative to the tube diameter, regions III and IV, both filled with
mixture, will quickly merge. This will create a ‘button’-like structure at the liquefaction
shock front, most likely at its centre. When the incident shock is faster, making the
pressure in region II higher, many liquid/vapour mixture drops can appear almost
simultaneously. Then the above mechanism leads to the appearance of many small-
scale asperities at the liquefaction shock front. Such small-scale surface asperities
were observed in experiments by Thompson et al. (1986), shown in the photograph
figure 22(d) in their paper. This raises the question whether the perturbation of
liquid/vapour mixture drops lead to the instability of the front IV → II. Answering
this question requires a detailed analysis of the stability of the liquefaction travelling
wave. We leave it for future investigations.
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5. Conclusion
An explanation for the symmetry breaking and the formation of rings of cloud

at the endwall of shock tube experiments on retrograde fluids is provided. This
explanation is based on the analysis of a prototype model for qualitative studies of
liquid/vapour phase transitions in shock tubes proposed by Fan (1998). After the
reflection of the incident dry shock, the pressure behind the reflected shock increases
to above pe. Many liquid/vapour droplets appear and grow behind the reflection
shock due to this higher pressure, breaking the cylindrical symmetry of the fluid
flow. The front of a liquid/vapour drop is shown to evolve into a ring, with the help
of the endwall. It is also shown that without the endwall, the front will not evolve
into a ring, coinciding with the experimental observations. Furthermore, the surface
structures, such as the ‘button’ at the centre and small-scale surface asperities, of the
liquefaction shocks at the exit of an open-end shock tube observed by Thompson
et al. (1986), are also explained.

The model used in this paper has already been shown in Fan (1998, 2000b) to
exhibit all the one-dimensional wave patterns listed in Thompson et al. (1987). In
this paper, two more types of one-dimensional waves, collapsing waves and explosion
waves, are numerically demonstrated to exist. The states in front of the collapsing
wave and explosion wave are metastable vapour and metastable liquid, respectively.
The states behind these waves are liquid/vapour mixture at equilibrium. It is found
that these waves are supersonic. Their speeds increase as the ratio µ/γ and |p+ − pe|
increase. Here p+ is the pressure in front of the collapsing wave and explosion wave.
The outer front of a liquid/vapour ring of cloud is a collapsing wave. Thus, one
can estimate the speed of a collapsing wave from photographs of experiments to see
whether they are supersonic as predicted by analysis of the model. Such estimation
from some photographs from Gulen et al. (1994) yields that the Mach numbers of
outer fronts of rings considered to range from 2 to 4, as expected.
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